
ALSKDJALSKDJALSKDJ:
documenting the process involved in writing a timing-accurate networked piece for a laptop ensemble

Konrad Kaczmarek

Princeton University
Graduate Student, Department of

Music

ABSTRACT

The piece, alskdjalskdjalskdj, was composed during
a three-year period of experimentation using a networked
laptop ensemble to create flexible conducting systems and
timing-accurate software instruments. During this time the
piece existed in several distinct states, each of which
reflected the compositional, programming, and creative
concerns at that particular time. By examining the
evolution of two aspects of the piece, the shared drawing
environment and the pulse-based software instrument, this
paper charts the process of the piece through these various
stages, highlighting the different approaches to
programming and the resulting changes in compositional
design.

1. BACKGROUND

My first experiments involved generating real-
time graphical scores for a group of improvising acoustic
performers as part of a graduate seminar on improvisation
and alternative performance spaces. In the final
performance, musicians were spread out over various
indoor and outdoor spaces, and ran an application on their
laptops that gave them instructions on how to play in real
time. These instructions came in the form of various
shapes and colors drawn on their screens that were
controlled by a conductor over the wireless network.

 The next stage of the piece incorporated a time-
accurate software instrument for generating the sounds,
and was created for an undergraduate course in computer
and electronic music through programming, performance,
and composition at Princeton University [2]. The
conducted, graphical element of this version of the piece
changed to reflect the compositional issues that emerged
with the addition of the new instrument. This version of
the piece was also shaped by experimentation and user
feedback that resulted from weekly workshop sessions
with the group throughout the semester [4].

After having performed the piece several times
with a professional group, Sideband, I developed a version
that brings the graphical elements back into the piece in a
meaningful and intuitive way. In this version, various
shapes that represent sonic events move around the screen,

causing notes to sound as they pass each performer’s
center-screen mark. The vertical position of the shape
determines the pitch, and users can knock down barriers
between adjacent screens, allowing their sounds to
spatially migrate throughout the ensemble. While the
software instrument is conceptually based on the timing
system of the previous version of the piece, it uses a
completely different approach to programming in order to
realize it.

2. THE SHARED DRAWING ENVIRONMENT

The first version of the piece established the
framework for the multi-user shared drawing environment
that would ultimately be used in all subsequent versions.
This environment worked by creating duplicate OpenGL
drawing scenes on all of the connected computers, but only
rendered a player-specific portion of the global space in
each client instance. In the first version of the piece, the
conductor used a host application to create and manipulate
various objects in the global space, which had clearly
marked zones designated for each performer (Fig. 1).

Figure 1. Example of the shared drawing environment.

 The different objects represented pre-determined
musical instructions, and functioned as individual elements
of a larger graphical score. The performers ran a client
application that revealed only their designated area of the
global space. As the conductor manipulated and moved
various objects in and out of the performers’ individual

views, he could effectively pass musical gesture around the
ensemble.

As the particular state of an object, such as its

shape type, size, color, rotational speed, and screen
position provided the graphical cues to the performers, it
was important that the conductor be able to easily control
several of the variables at the same time in order to create
more complicated gestures. To achieve this, the conductor
used a Wacom tablet as a multi-dimensional real-time
input device and premade automation data. By holding
down one of the number keys to select a specific object,
the conductor could control the object’s size, position, and
color using the tablet’s pen pressure, x/y position, and pen
tilt values. The gestures that were generated could be
recorded and played back at any point in the performance,
or saved to use in subsequent performances.

As the number of parameters increased to reflect

the greater degree of control over the desired conducted
gesture, I began experimenting with incorporating a simple
physics model that could control the objects in a more
autonomous way. In this new environment, the conductor
had control over parameters such as an object’s velocity,
coefficient of drag, and mass, and could set the overall
system’s gravity and control of collisions. The drawing
aspect of the program was thus ported from
Max/MSP/Jitter to Java, as that platform’s text-based
programming environment and its direct communication
with OpenGL was better suited for these types of
calculations. The physics model ran on the conductor’s
server application, which sent out the relevant drawing
commands to the rest of the ensemble. At any point in the
performance, the conductor was still able to manually
control any individual object, overriding whatever physics
model was currently active.

The addition of the networked software

instrument in the next stage of the piece greatly altered the
role of the shared drawing environment. The musical
parameters that the drawn objects communicated to the
group of improvisers were either no longer applicable to
the new instrument, or could be controlled directly by the
conductor over the network. As a result, the drawing
environment was rewritten to communicate performance
instructions more explicitly in the form of text that was
drawn on the performer’s screens. The graphical aspect of
the drawing environment was limited to the ability to
change the color and brightness of individual performer’s
screens. While the framework of the shared drawing
environment was kept in place to render the text-based
instructions and differentiate between individual
performers, it was no longer used to draw individual
objects and therefore no longer functioned as a graphical
score. Instead, as the piece was ultimately performed in
very low light, the glow that reflected back onto the

performer’s faces as their screens changed color provided a
dramatic visual component to the performance (Fig. 2).

Figure 2. A performance of alskdjalskdj in low light.

The most recent version of the piece brought

together the underlying shared drawing environment, the
physics-based object models, and the software instrument
in a meaningful and musically expressive way. The
underlying java code was once again rewritten so that
drawn objects would now trigger actual sonic events, and
could be created and manipulated not only by the
conductor, but by the performer themselves. Performers
also had control over the boundary functions, allowing the
objects that they created to move beyond their own screens
and generate sounds on other performer’s computers.

The first two versions of the piece used a

centralized server/client architecture to control the shared
drawing context. This method was well suited for the
unidirectional mode of communication that existed
between the conductor and performers, as the conductor
generated all of the control data, the client application
simply received this information over the network and
translated it into the appropriate drawing commands. The
initial physics model also functioned in this capacity, with
the conductor machine running the model and then
broadcasting the resulting data to the rest of the ensemble
over the network. The final version of the piece, however,
used a more distributed control of the drawing context,
which effectively turned each performer into a conductor.
When a performer created an object on their laptop, the
object was also created in the global scene that was
running on all of the laptops connected in the network. As
a result, each performer application calculated the physics
model as well as generating the resulting drawn graphics.
The conductor and performers thus ran the exact same
underlying code, but used different interfaces to determine
what parameters they had control over.

3. THE INSTRUMENT

I wanted to establish a rhythmic language for this
piece that could quickly alternate between precise
ensemble playing and a more diffused or indeterminate
hocketed sound. To achieve this, I created a software
instrument that generates looping rhythmic patterns using
sampled instruments triggered by performers keystrokes.
When a key is pressed, the instrument initiates a repeating
pulse of notes that correspond to that particular keystroke.
The performer can create complex ostinato patterns by
initiating multiple pulses of varying frequency and scale
degree. The performer sets the rate of each pulse relative
to a conductor-determined base tempo, and then decides
when to trigger the pulse within the overall looping
texture, effectively determining the phase. Individual
pulses can then be manually resynced or turned off, either
by the performers themselves or by the conductor. By
sending networked controller data routed directly to the
software instrument, the conductor also controls the overall
tempo, the type of pitch mapping, the key, and the level of
the audio effects.

Due to the wide range of musical backgrounds in

the group of undergraduates and the improvisatory nature
of the piece, I decided not to describe the ostinato patterns
using traditional musical notation. Instead, performers
received instructions on how to construct their patterns
from the conductor in real-time. These instructions came
in the form of a “number of voices” parameter that was
displayed on their screens and dictated how many note
pulses should be sounding at a given time, and other text-
based performance instructions such as “listen for a gap in
the overall ensemble sound, and try to place a new pulse
there”. The changing color of their screens indicated what
sample bank they should be playing. The sample banks
included prepared piano, acoustic guitar, hammer
dulcimer, vibraphone, glockenspiel, and an electronic
percussion set.

In this stage of the piece, controlling the pulses of

notes remotely effectively meant simulating a performer’s
keystroke. The conductor could turn on or off any
individual pulse by sending the corresponding note on, off,
or sync keystrokes to a player in the ensemble. This
facilitated a form of improvisation in which the conductor
was able to set the entire ensemble to a uniform rhythmic
pattern, for example by syncing all of their pulses at the
same time, and then give them instructions on how to
deviate from it either by re-syncing their pulses or by
adding new ones. This achieved the desired range of
rhythmic language in this piece, and also allowed
individual performers to shape the sound of the ensemble
in an intuitive way, regardless of their musical background.

After receiving feedback from the ensemble about
their desire to be able to shape the sound of the group as a
whole in other ways, I added in the ability to save, recall,
and retrigger entire ostinato patterns, as well as the ability
to share them with each other over the network. With a
single keystroke, a performer was now able to retrigger the
exact sequence of pulses they had entered, or bring back a
multi-pulse sequence they had played earlier in the
performance. A graphical interface indicated when a
player had shared a pattern, and performers could then
choose to adopt that pattern, playing it back unchanged or
altering it in various ways. Experimentation with the
ensemble also led to implementing a sub-grouping
function, which enabled the conductor to send messages or
control data to any subset of the ensemble.

The most recent version of the piece brought

together the physics-based drawing model and the software
instrument, establishing a meaningful correlation between
the visual and sonic components. In this version, the
repeating pulses of notes were represented graphically by
moving objects bounded within a certain area (Fig. 3). The
individual object’s velocity, vertical height on the screen,
and radius determined that pulse’s rate, scale degree, and
octave. As the objects crossed the center of the screen,
they generated note-on messages, which Max routed to the
software sampler. By giving the objects different y
velocities, the performers were now able to create simple
melodies with their pulses in a way that was not possible
with the pervious system. Similarly, as the drawing
context was exactly mirrored in each instance, the
performers could remove the boundaries between adjacent
screens and allow their pulses to migrate around the
ensemble. This gave them another way to interact with the
ensemble as a whole, and to sculpt their sound spatially in
a way that was not possible with the previous version.

Figure 3. A snapshot of the graphical representation of an
ostinato pattern.

Whereas the previous version of the software
instrument used a timing system driven by Max/MSP’s
own scheduler, the note-on messages of the physics-based
model were generated within Java using a separate
scheduler thread, ensuring that the timing of the note
pulses were not affected by the rendering frame-rate.

4. CONCLUSIONS

As with most pieces written for the laptop
ensemble, the process of creating alskjdlaksjdlkajsd
involved aspects of instrument design as well as more
conventional compositional concerns [2, 3]. With the
addition of network connectivity, this process also
incorporated establishing novel means of communication,
both on a technological and a musical level. These factors
interacted with each other in a complex system of mutual
influence and feedback, as a particular compositional idea
was inevitably altered by the technology used to realize it.
Feedback from performers also played an important role in
the development process, providing valuable insight into
the effectiveness of the various types of communication.

 The changing role of the graphics during the piece’s
development represented one clear manifestation of the
mutual influence and feedback that existed between
compositional approach, instrument design, and the
various modes of communication. The shared drawing
environment was initially conceived of as a way for a
conductor to orchestrate an improvising ensemble in real
time by functioning as an ensemble-wide graphical score.
New modes of communication within the ensemble that
were established with the addition of the networked
instrument in turn shifted the role of the graphics to a more
practical means of delivering performance instructions.
Finally, by attaching the physics-based drawing model to
the pulse-based software instrument, the role of the
graphics changed once again towards a more representative
and performative type of functionality.

One important theme that emerged during the
development of this piece was the changing role of the
conductor, which was manifest in a gradual shift in control
away from the conductor towards the individual performer.
Initially, the conductor used the technology to control the
drawn environment, building on the conceptual model of
gesture-based scored improvisation that was developed by
musicians like John Zorn, Butch Morris, and Frank Zappa
in the later part of the twentieth century [1]. As the
programming evolved to incorporate autonomous control
of the graphical elements, various aspects of control were
effectively taken away from the conductor, freeing him or
her to focus on other aspects of the performance.
Similarly, the shifting ways in which the performers were
able to communicate with each other directly over the
network resulted in changes in the conductor/performer

dynamic. These changes subsequently lead to more
interesting ways for the group to perform, establishing a
type of meta-instrument that encompassed the entire
ensemble. Finally, by giving the performers control of
their own set of drawn objects, the line between conductor
and performer that was established in the first version of
the piece became increasingly blurred [3].

Each step in the piece’s evolution forced a
fundamental shift both in the way the underlying code that
was implemented and in the ways in which the conductor
and the performers functioned within the piece. A flexible
approach to programming and compositional design was
therefore vital to creating a successful piece within this
medium, as it allowed the piece to transcend any singular
technological aspect or innovation. For this reason,
aslkdjalskjdalksjd will undoubtedly continue to evolve and
redefine itself in the future.

5. REFERENCES

[1] Brackett, John. “Some Notes on John Zorn’s Cobra”,
in American Music, Vol. 28, no. 1 (2010): 44-75

[2] Lansky, Paul. “A View From the Bus: When
Machines Make Music”, in Perspectives of New
Music vol. 28/2, (Summer 1990)

[3] Smallwood, Scott; Trueman, Dan; Wang, Ge; Cook,
Perry. “Composing for Laptop Orchestra,” Computer
Music Journal Spring 2008, Vol. 32, No. 1: 9–25.

[4] Trueman, D. “Clapping Machine Music Variations: a
composition for acoustic/laptop ensemble” in
Proceedings of the International Computer Music
Conference (ICMC), New York City, June 1–5, 2010.

[5] Trueman, D. “Why a Laptop Orchestra?” in
Organised Sound 12:2, August 2007.

